The generator matrix

 1  0  0  0  1  1  1  0  1  1  1  1  X  X  X  1  X  0  1  0  0  1  1  0  1  1  X  1  1  X  0  1  1  1  0  0  1  1  1  0  X  0  1  1  1  1  1
 0  1  0  0  0  1  1  1  X  0 X+1 X+1  1  1  X  1  1  1 X+1  1  0  X  0  0 X+1  1  1  0  0  1  0 X+1  0 X+1  X  1  1 X+1  X  0  X  1  1  1  X  1  X
 0  0  1  0  1  1  0  1  0 X+1 X+1  X  X X+1  1  X  X X+1 X+1  1  1 X+1  0  0  1  0  0 X+1 X+1  1  0  X X+1  1  1  0  1  1  X  1  1  0  0  X  0  0  1
 0  0  0  1  1  0  1  1  1  0  1  X X+1  0 X+1  1  1 X+1  0  X  X X+1  0  1  X  X  X  X  0 X+1  1 X+1 X+1  0  1  1  1  X  0  0  0 X+1 X+1  1  1  0  X
 0  0  0  0  X  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  X  X  X  X  X  0  X  X  X  X  0  X  0  X  X  X  X  X  0  X  X  X  X  0  0  0
 0  0  0  0  0  X  0  0  0  0  0  0  X  0  0  0  X  0  X  X  X  0  X  X  0  X  X  X  X  0  0  X  X  0  X  0  X  X  0  0  X  0  0  0  X  0  0
 0  0  0  0  0  0  X  0  0  0  0  0  0  X  X  X  0  X  X  0  0  0  0  X  X  X  0  0  X  0  X  X  0  X  X  0  X  X  0  X  X  0  X  X  0  X  0
 0  0  0  0  0  0  0  X  X  X  0  X  X  X  X  X  0  0  X  0  X  X  0  X  X  X  0  X  0  X  X  0  0  0  0  0  0  X  X  X  X  X  0  X  0  X  0

generates a code of length 47 over Z2[X]/(X^2) who�s minimum homogenous weight is 38.

Homogenous weight enumerator: w(x)=1x^0+74x^38+130x^39+159x^40+220x^41+251x^42+244x^43+305x^44+296x^45+254x^46+280x^47+270x^48+312x^49+262x^50+244x^51+220x^52+168x^53+158x^54+118x^55+55x^56+28x^57+23x^58+8x^59+10x^60+2x^62+3x^64+1x^76

The gray image is a linear code over GF(2) with n=94, k=12 and d=38.
This code was found by Heurico 1.16 in 1.55 seconds.